
Pair	Programming	
&	

Mob	Programming	
An	Introduc3on	



The	classic	way:	the	lone	coder	
•  Coders	code	on	their	own,	in	the	zone,	a	

code	warrior	on	the	edge	of	3me.	
•  Other	coders	are	not	aware	of	the	code	they	

are	wri3ng.	
•  If	the	coder	gets	stuck	then	they	may	spend	a	

long	3me	trying	to	sort	out	an	issue;	they	
may	be	embarrassed	to	ask	for	help.	

•  It	therefore	hard	to	maintain	and	measure	
code	quality,	which	can	lead	to	a	
requirement	of	code	reviews	(or	ought	to).	

•  It	can	cause	a	lack	of	team	ownership	of	
code,	leading	to	“well,	I	didn’t	write	this,	so-
and-so	did”.	

•  Knowledge	silos	are	created	when	only	one	
developer	knows	the	code.		If	a	person	
leaves,	they	take	their	knowledge	silo	with	
them.	

•  It	makes	it	hard	for	newcomers	to	the	team	
to	learn.	



Pair	Programming	
•  From	XP	(eXtreme	

Programming).	
•  Part	of	the	technical	

implementa3on	of	Agile.	
•  Two-developers	work	on	

the	task	together.	
•  One	of	the	pair	can	break	

off	to	do	something	else	
then	come	back	later;	
This	is	especially	useful	
during	analysis	tasks.	



Ways	to	do	it	physically	

•  Co-located	teams,	sharing	a	keyboard,	or	with	
two	keyboards.	

•  Remotely	using	Skype	sharing	a	screen.	
•  Remotely	using	TeamViewer,	or	similar	VNC	
product.	

•  Co-located	teams	work	best	in	my	experience.	
•  But	pair	programming	helps	keep	remote	
workers	from	loosing	focus	or	slacking	off!	



Ways	to	do	it	
•  People	take	it	in	turn	to	drive.	
•  The	driver	has	the	keyboard,	the	passenger	sits	
on	their	hands!	

•  Swap	every	10	to	20	minutes	(15	is	good).	
•  If	one	person	is	less	experienced,	then	it	may	be	
good	to	let	them	drive	more;	may	help	enhance	
the	knowledge	transfer.	

•  For	longer	tasks,	one	person	in	each	pair	can	
swap-off	the	task	at	the	next	day	and	another	can	
come	on	to	it.		The	next	day,	the	other	swaps-off.	



Results	–	Benefits	
•  Knowledge	transfer	between	developers	is	con3nuous.		

Makes	it	easier	to	get	newbies	up	to	speed.	
•  Greater	sense	of	team-ownership	of	code.	
•  Code	quality	most	o_en	improves;	bugs	go	down.	
•  Knowledge	is	not	3ed	up	in	the	mind	of	a	single	coder.	
•  Problems	are	solved	faster	and	more	efficiently	due	to	

constant	exchange	of	ideas.	
•  Swapping-off	and	onto	tasks	increases	spread	of	knowledge	

in	team.	
•  It	feels	good;	there’s	more	human	interac3on,	and	people	

o_en	feel	more	confident	about	the	solu3ons	they	create.	



Results	-	Downsides	
•  It	can	be	hard	to	jus3fy	to	management	–	as	it	seems	like	using	

twice	as	many	resources	to	achieve	the	same	goal.	
•  There’s	not	a	lot	of	evidence	out	there	to	support	it;	no	precy	

graphs	to	show	management.	
•  If	your	test	suite	takes	ages	to	run,	then	it	can	seem	like	quite	a	

waste	of	3me	to	do	pair	test	runner	watching.	
•  However,	you	can	measure	in	your	team	using	cycle	3me,	burn	

down	rate,	and	number	of	bugs	from	released	code.	
•  I	have	experienced	some	developers	who	found	it	3ring	to	pair	all	

the	3me;	encourage	some	breaking	off,	or	more	swapping.	
•  I	have	also	experienced	a	pair	who	conspired	to	do	ill	as	neither	

were	convinced	with	Agile	principles.		Once	noted	we	could	ensure	
they	rarely	paired	together	and	frequently	swapped.		Also	see	Mob	
Programming….	





Mob	Programming	
•  Defined	by	Moses	Hohman	and	

Andrew	Slocum	in	“Extreme	
Programming	Perspec;ves”	(2003)	

•  Recently	popularised	by	Woody	Zuill	
in	“Mob	Programming:	A	Whole	
Team	Approach”	(2014).	

•  Everyone	shares	a	single	keyboard!	
•  Developers	take	it	in	turns	to	drive.	
•  Varia3on:	the	driver	can’t	contribute	
•  Co-loca3on	is	precy	much	a	must.	
•  Developers	(and	POs,	etc)	are	able	to	

drop	in	and	out	freely.	



Let’s	watch	a	video	from	Woody	Zuill	



Results	
•  Total	team-ownership	of	code.		Ability	to	say	“we	did	
this,	we	decided	that”	with	convic3on.	

•  Enhanced	code	quality,	far,	far	fewer	bugs.	
•  Knowledge	transfer	to	all	team	members	(to	at	least	
some	degree).	

•  Can	help	iden3fy	knowledge	silos.	
•  In	my	experience	it	doesn’t	actually	slow	a	team	down,	
remarkably.		Any	slow	down	can	be	jus3fied	by	
resul3ng	code	quality.	

•  Eliminates	conspiracies-to-do-bad;	well,	if	the	whole	
team	agrees	to	the	conspiracy,	then	you’re	precy	
much	sunk!	



Mob	programming	-	downsides	

•  Whatever	you	do,	don’t	tell	the	FD!	(at	least	
not	un3l	you	have	proof	it	works).	

•  Remote	workers	are	hard	to	integrate.	
•  Not	that	good	for	inves3ga3on	and	analysis.	
•  Not	that	good	for	devops/sysadmin	tasks;	
pairing	works	becer	for	this.	

•  Will	most	likely	ini3ally	affect	your	throughput	
as	it	reduces	your	team’s	WIP	limit	to	one.	



And	not	just	programming…	

•  Analysis	
•  Backlog	grooming	
•  Tes3ng	
•  Systems	administra3on	/	DevOps	
•  Repor3ng	
•  Digging	holes	in	the	road	(mob	digging	has	
been	used	for	this	for	many	years	already).	



And	remember	to	also…	
•  Keep	the	stories	short.	
•  Focus	on	the	what,	why	and	

for	whom,	not	the	how.	
•  Do	test-driven	

development.	
•  Write	CLEAN	code.	
•  Use	design	pacerns.	
•  Refactor	o_en.	
•  Nurture	respect	amongst	

your	team	members.	
•  Sit	on	your	hands	if	you	

can’t	keep	them	off	the	
keyboard.	



Thank	you.	
07811	671	893	

	
mike.harris@leanbytes.co.uk	

hcp://leanbytes.co.uk	
hcps://mbharris.co.uk	

hcp://uk.linkedin.com/in/mbharris	
hcps://github.com/mikebharris/	


