Being a better programmer

Writing Clean Cede COBOL

Lean Dyies

“Writing clean code is what you
must do in order to call yourself a
professional. There is no reasonable
excuse for doing anything less than
your best.”

Code Hell

OF Coche QMALH’\{Z \/\fTFS/qun—C

A
o
<,
Code WTE cocle w, '
ReView |~ ReView Pp
>t J//
_— “ -1 wre
- /'/
.

Good code . BAd codle.

Reproduced with the kind permission of Thom Holwerda.
http://www.osnews.com/story/19266/WTFs_m

(c) 2008 Focus Shift

Code Hell Example

get the count of rows in the database
$x is the row count going forwards

my Sarrayref = $sth->fetchall arrayref;
Ssth->finish;

my %label hash;
foreach (@{Sarrayref}) {

$label hash{$ ->[0]} = $ ->[1];
}

next line gets the values but first sorts by the values in the hash
not the keys themselves. Ref: Perl Cookbook P.144

my @values = sort { $label hash{$a} cmp $label hash{$b} } keys %label hash;
if (scalar @values eq 0) {
return S$query->b($APP_OPTIONS{'text no_admins_available'});

} else {

return $query->popup menu(-name => 'admin_id',
-values => \@values,
-labels => \%label hash,
)i

Code Hell Example

get the count of rows in the database
$x is the row count going forwards

Random old comment

my Sarrayref = $sth->fetchall arrayref;
Ssth->finish;

my %label_ hash; What is label hash?
foreach (@{$arrayref}) {

$label hash{$ ->[0]} = $ ->[1]; What’s the point of this?
}

next line gets the values but first sorts by the values in the
not the keys themselves. Ref: Perl Cookbook P.144

my @values = sort { $label hash{$a} cmp $label hash{$b} } keys %label hash;
A

if (scalar @values eq 0) { What does this mean?

return $query->b($APP_OPTIONS{'text no admins available'});

} else {

return $query->popup menu(-name => 'admin_id',
-values => \@values,
-labels => \%label hash,
)i

You're not just a coder or a hacker
but a professional

so get out of the zone
and craft your code

Code for your fellow programmers

* Write clean code so that your fellow
programmers will be able to read and
understand it easily.

* Write clean code so that your fellow
programmers will be able to maintain and
extend it easily.

* Write tests for your clean code so that your
fellow programmers will know what it does
and can change it with confidence.

Code for yourself

Write clean code that you will understand
when you come back to it six months later.

Write clean code that you feel proud of and
will still feel proud of six months later.

Werite tests for your clean code so that you
can extend it or refactor it easily.

Werite clean code because you’re a
professional and you love your craft.

Clean Code Principles

Use MeaningfulNamesForYourVariables

Write small functions that do one thing only and
have no side-effects

Avoid excessive comments, avoid comments
Abstract your data into structures or objects
Provide error handling, raise exceptions
Write unit tests for your code

Write your code, then refactor it; refactor it
again

Clean COBOL

What is COBOL?

COmmon Business Orientated
Language »
“Invented” by Grace Hopper, who &}
was the inventor of FLOW-MATIC. ®

Standardised between 1959 and
1960 by CODASYL (Pentagon).

Designed to be platform and
proprietor independent.

Code should be readable by
managers, business people and
not just computer scientists.

Originally an ANSI standard, now
ISO with latest specification in
2014!

COBOL Features:
500+ Reserved Words!

ABS, ACOS, ANNUITY, ASIN, ATAN, BYTE-LENGTH, CHAR, COMBINED-DATETIME,

CONCATENATE, COS, CURRENCY-SYMBOL, CURRENT-DATE, DATE-OF-INTEGER,

DATE-TO-YYYYMMDD, DAY-OF-INTEGER, DAY-TO-YYYYDDD, E, EXCEPTION-FILE,

EXCEPTION-LOCATION, EXCEPTION-STATEMENT, EXCEPTION-STATUS, EXP, EXP10,

FACTORIAL, FORMATTED-CURRENT-DATE, FORMATTED-DATE, FORMATTED-DATETIME,

FORMATTED-TIME, FRACTION-PART, HIGHEST-ALGEBRAIC, INTEGER,

INTEGER-OF-DATE, INTEGER-OF-DAY, INTEGER-OF-FORMATTED-DATE,

INTEGER-PART, LENGTH, LENGTH-AN, LOCALE-COMPARE, LOCALE-DATE,

LOCALE-TIME, LOCALE-TIME-FROM-SECONDS, LOG, LOG10, LOWER-CASE,

LOWEST-ALGEBRAIC, MAX, MEAN, MEDIAN, MIDRANGE, MIN, MOD,

MODULE-CALLER-ID, MODULE-DATE, MODULE-FORMATTED-DATE, MODULE-ID,

MODULE-PATH, MODULE-SOURCE, MODULE-TIME, MONETARY-DECIMAL-POINT,
MONETARY-THOUSANDS-SEPARATOR, NUMERIC-DECIMAL-POINT,

NUMERIC-THOUSANDS-SEPARATOR, NUMVAL, NUMVAL-C, NUMVAL-F, ORD, ORD-MAX,

ORD-MIN, PI, PRESENT-VALUE, RANDOM, RANGE, REM, REVERSE,

SECONDS-FROM-FORMATTED-TIME, SECONDS-PAST-MIDNIGHT, SIGN, SIN, SQRT,

STANDARD-DEVIATION, STORED-CHAR-LENGTH, SUBSTITUTE, SUBSTITUTE-CASE,

SUM, TAN, TEST-DATE-YYYYMMDD, TEST-DAY-Y ¥ 7 0 o0ttt i s
TEST-NUMVAL, TEST-NUMVAL-C, TEST-NUMVAL COBOL has some 500+ reserved words.

WHEN-COMPILED, YEAR-TO-YYYY IDENTIFICATIO
EVALUATEWHEN IS THEN IF END PROGRAM FUN
C in contrast has just 50.

Prolog has none!

COBOL Features: Legibility

import Jjava.math.BigDecimal;
public class SalesTaxWithBigDecimal

{

public static void main(java.lang.String[] args)

{
BigDhecimal beforeTax BigDecimal.valueOf (12345, 2);

BigDhecimal salesTaxRate = BigDecimal.valueOf (65, 3);
BigDhecimal ratePlusOne =
salesTaxRate.add(BigDecimal.valueOf(1l));

BigDhecimal afterTax = beforeTax.multiply(ratePlusOne);
afterTax = afterTax.setScale(2, BigDecimal.ROUND HALF UP);
System.out.println("After tax amount is " + afterTax);

identification division.
. program-id. SalesTax.
» working-storage section.

01 beforeTax picture 999V999 value 123.45.
01 salesTaxRate picture V9999 value .065.
01 afterTax picture 999.99.
. procedure division.
i Main.
compute afterTax rounded = beforeTax + (beforeTax * salesTaxRate)

display “After tax amount is *“ afterTax.

But doesn’t COBOL suck?

Well yes, perhaps it does.
It’s really, really old.

There’s some horrendous code out there. Lots of
use of GO TO and other spaghetti code
techniques.

It predated structured programming, object
oriented programming. A lot of code lacks sub-
programs, functions or classes.

But times have changed, and perhaps bad
programmers are wont to blame their tools?

Clean COBOL example

https://github.com/mikebharris/

https://github.com/OpenCobollDE/

https://sourceforge.net/projects/open-cobol/

Summary

Become a better programmer, be a professional
and craft your code.

Read Bob Martin’s Clean Code and The Clean
Coder. Read them again.

Write tests.

Bad code can be written in the latest and greatest
trendy new Google language; good code can be
written in an old dinosaur of a language.

COBOL doesn’t suck as much as you might have
thought.

Thank you.

07811671 893

mike.harris@leanbytes.co.uk
http://leanbytes.co.uk
https://mbharris.co.uk
http://uk.linkedin.com/in/mbharris
https://github.com/mikebharris/

(c) 2016 Mike Harris under GNU FDL 1.3 LEB“ E'_-ItES

